Skip to content

transform

Functions to computing and working with transformations between point clouds

apply_transform(src, transform, shift)

Apply a transformation to a set of points.

Parameters:

Name Type Description Default
src NDArray[floating]

The points to transform. Should have shape (npoints, ndim).

required
transform NDArray[floating]

The transformation matrix. Should have shape (ndim, ndim).

required
shift NDArray[floating]

The shift to apply after the affine tranrform. Should have shape (ndim,).

required

Returns:

Name Type Description
transformed NDArray[floating]

The transformed points. Has the same shape as src.

Raises:

Type Description
ValueError

If src is not a 2d array. If one of src's axis is not of size ndim. If affine and shift have inconsistent shapes.

Source code in megham/transform.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def apply_transform(
    src: NDArray[np.floating],
    transform: NDArray[np.floating],
    shift: NDArray[np.floating],
) -> NDArray[np.floating]:
    """
    Apply a transformation to a set of points.

    Parameters
    ----------
    src : NDArray[np.floating]
        The points to transform.
        Should have shape  (npoints, ndim).
    transform: NDArray[np.floating]
        The transformation matrix.
        Should have shape (ndim, ndim).
    shift : NDArray[np.floating]
        The shift to apply after the affine tranrform.
        Should have shape (ndim,).

    Returns
    -------
    transformed : NDArray[np.floating]
        The transformed points.
        Has the same shape as src.

    Raises
    ------
    ValueError
        If src is not a 2d array.
        If one of src's axis is not of size ndim.
        If affine and shift have inconsistent shapes.
    """
    ndim = len(shift)
    if transform.shape != (ndim, ndim):
        raise ValueError(
            f"From shift we assume ndim={ndim} but transform has shape {transform.shape}"
        )
    src_shape = np.array(src.shape)
    if len(src_shape) != 2:
        raise ValueError(f"src should be a 2d array, not {len(src.shape)}d")

    transformed = src @ transform + shift
    return transformed

decompose_affine(affine)

Decompose an affine transformation into its components. This decomposetion treats the affine matrix as: rotation * shear * scale.

Parameters:

Name Type Description Default
affine NDArray[floating]

The (ndim, ndim) affine transformation matrix.

required

Returns:

Name Type Description
scale NDArray[floating]

The (ndim,) array of scale parameters.

shear NDArray[floating]

The (ndim*(ndim - 1)/2,) array of shear parameters.

rot NDArray[floating]

The (ndim, ndim) rotation matrix. If ndim is 2 or 3 then decompose_rotation can be used to get euler angles.

Raises:

Type Description
ValueError

If affine is not ndim by ndim.

Source code in megham/transform.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def decompose_affine(
    affine: NDArray[np.floating],
) -> tuple[NDArray[np.floating], NDArray[np.floating], NDArray[np.floating]]:
    """
    Decompose an affine transformation into its components.
    This decomposetion treats the affine matrix as: rotation * shear * scale.

    Parameters
    ----------
    affine : NDArray[np.floating]
        The (ndim, ndim) affine transformation matrix.

    Returns
    -------
    scale : NDArray[np.floating]
        The (ndim,) array of scale parameters.
    shear : NDArray[np.floating]
        The (ndim*(ndim - 1)/2,) array of shear parameters.
    rot: NDArray[np.floating]
        The (ndim, ndim) rotation matrix.
        If ndim is 2 or 3 then decompose_rotation can be used to get euler angles.

    Raises
    ------
    ValueError
        If affine is not ndim by ndim.
    """
    ndim = len(affine)
    if affine.shape != (ndim, ndim):
        raise ValueError("Affine matrix should be ndim by ndim")
    # Use the fact that rotation matrix times its transpose is the identity
    no_rot = affine.T @ affine
    # Decompose to get a matrix with just scale and shear
    no_rot = la.cholesky(no_rot).T

    scale = np.diag(no_rot)
    shear = (no_rot / scale[:, None])[np.triu_indices(len(no_rot), k=1)]
    rot = affine @ la.inv(no_rot)

    return scale, shear, rot

decompose_rotation(rotation)

Decompose a rotation matrix into its xyz rotation angles. This currently won't work on anything higher than 3 dimensions.

Parameters:

Name Type Description Default
rotation NDArray[floating]

The (ndim, ndim) rotation matrix.

required

Returns:

Name Type Description
angles NDArray[floating]

The rotation angles in radians. If the input is 3d then this has 3 angles in xyz order, if 2d it just has one.

Raises:

Type Description
ValueError

If affine is not ndim by ndim. If ndim is not 2 or 3.

Source code in megham/transform.py
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
def decompose_rotation(rotation: NDArray[np.floating]) -> NDArray[np.floating]:
    """
    Decompose a rotation matrix into its xyz rotation angles.
    This currently won't work on anything higher than 3 dimensions.

    Parameters
    ----------
    rotation : NDArray[np.floating]
        The (ndim, ndim) rotation matrix.

    Returns
    -------
    angles : NDArray[np.floating]
        The rotation angles in radians.
        If the input is 3d then this has 3 angles in xyz order,
        if 2d it just has one.

    Raises
    ------
    ValueError
        If affine is not ndim by ndim.
        If ndim is not 2 or 3.
    """
    ndim = len(rotation)
    if ndim > 3:
        raise ValueError("No support for rotations in more than 3 dimensions")
    if ndim < 2:
        raise ValueError("Rotations with less than 2 dimensions don't make sense")
    if rotation.shape != (ndim, ndim):
        raise ValueError("Rotation matrix should be ndim by ndim")
    _rotation = np.eye(3)
    _rotation[:ndim, :ndim] = rotation
    angles = R.from_matrix(_rotation).as_euler("xyz")

    if ndim == 2:
        angles = angles[-1:]
    return angles

get_affine(src, dst, weights=None, center_dst=True, force_svd=False, **kwargs)

Get affine transformation between two point clouds. It is assumed that the point clouds have the same registration, ie. src[i] corresponds to dst[i].

Transformation is dst = src@affine + shift.

Parameters:

Name Type Description Default
src NDArray[floating]

A (npoints, ndim) array of source points.

required
dst NDArray[floating]

A (npoints, ndim) array of destination points.

required
weights Optional[NDArray[floating]]

(npoints,) array of weights to use. If provided a weighted least squares is done instead of an SVD.

None
center_dst bool

If True, dst will be recentered at the origin before computing transformation. This is done with get_shift, but weights will not be used if provided.

True
force_svd bool

If True the SVD is used even if there are a small number of points or weights are present.

False
**kwargs

Arguments to pass to get_shift.

{}

Returns:

Name Type Description
affine NDArray[floating]

The (ndim, ndim) transformation matrix.

shift NDArray[floating]

The (ndim,) shift to apply after transformation.

Raises:

Type Description
ValueError

If the input point clouds have different shapes. If the input point clouds don't have enough points.

Source code in megham/transform.py
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
def get_affine(
    src: NDArray[np.floating],
    dst: NDArray[np.floating],
    weights: Optional[NDArray[np.floating]] = None,
    center_dst: bool = True,
    force_svd: bool = False,
    **kwargs,
) -> tuple[NDArray[np.floating], NDArray[np.floating]]:
    """
    Get affine transformation between two point clouds.
    It is assumed that the point clouds have the same registration,
    ie. src[i] corresponds to dst[i].

    Transformation is dst = src@affine + shift.

    Parameters
    ----------
    src : NDArray[np.floating]
        A (npoints, ndim) array of source points.
    dst : NDArray[np.floating]
        A (npoints, ndim) array of destination points.
    weights : Optional[NDArray[np.floating]], default: None
        (npoints,) array of weights to use.
        If provided a weighted least squares is done instead of an SVD.
    center_dst : bool, default: True
        If True, dst will be recentered at the origin before computing transformation.
        This is done with get_shift, but weights will not be used if provided.
    force_svd : bool, default: False
        If True the SVD is used even if there are a small number of points
        or weights are present.
    **kwargs
        Arguments to pass to get_shift.

    Returns
    -------
    affine : NDArray[np.floating]
        The (ndim, ndim) transformation matrix.
    shift : NDArray[np.floating]
        The (ndim,) shift to apply after transformation.

    Raises
    ------
    ValueError
        If the input point clouds have different shapes.
        If the input point clouds don't have enough points.
    """
    if src.shape != dst.shape:
        raise ValueError("Input point clouds should have the same shape")

    msk = np.isfinite(src).all(axis=1) * np.isfinite(dst).all(axis=1)
    if np.sum(msk) < src.shape[1] + 1:
        raise ValueError("Not enough finite points to compute transformation")

    # When we have a small number of points lstsq is better than SVD
    # Condition is a bit arbitrary for now
    if force_svd is False and weights is None and np.sum(msk) < 50 * src.shape[1]:
        weights = np.ones(len(src))

    _dst = dst[msk].copy()
    if center_dst:
        _dst += get_shift(_dst, np.zeros(1), **kwargs)
    _src = src[msk].copy()
    init_shift = get_shift(_src, _dst, weights=weights, **kwargs)

    if force_svd or weights is None:
        M = np.vstack((_src.T, (_dst - init_shift).T)).T
        *_, vh = la.svd(M)
        vh_splits = [
            quad
            for half in np.split(vh.T, 2, axis=0)
            for quad in np.split(half, 2, axis=1)
        ]
        affine = np.dot(vh_splits[2], la.pinv(vh_splits[0])).T
        shift = init_shift
    else:
        rt_weight = np.sqrt(weights[msk])[..., None]
        wsrc = rt_weight * _src
        wdst = rt_weight * (_dst - init_shift)
        x, *_ = la.lstsq(
            np.column_stack((wsrc, np.ones(len(wsrc)))), wdst, check_finite=False
        )
        affine = x[:-1]
        shift = x[-1] + init_shift

    transformed = src[msk] @ affine + shift
    shift += get_shift(transformed, dst[msk], **kwargs)

    return affine, shift

get_rigid(src, dst, center_dst=True, **kwargs)

Get rigid transformation between two point clouds. It is assumed that the point clouds have the same registration, ie. src[i] corresponds to dst[i].

Transformation is dst = src@rot + shift.

Parameters:

Name Type Description Default
src NDArray[floating]

A (npoints, ndim) array of source points.

required
dst NDArray[floating]

A (npoints, ndim) array of destination points.

required
center_dst bool

If True, dst will be recentered at the origin before computing transformation. This is done with get_shift, but weights will not be used if provided.

True
**kwargs

Arguments to pass to get_shift.

{}

Returns:

Name Type Description
rotation NDArray[floating]

The (ndim, ndim) rotation matrix.

shift NDArray[floating]

The (ndim,) shift to apply after transformation. If point are in col basis will be returned as a column vector.

Raises:

Type Description
ValueError

If the input point clouds have different shapes. If the input point clouds don't have enough points.

Source code in megham/transform.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def get_rigid(
    src: NDArray[np.floating],
    dst: NDArray[np.floating],
    center_dst: bool = True,
    **kwargs,
) -> tuple[NDArray[np.floating], NDArray[np.floating]]:
    """
    Get rigid transformation between two point clouds.
    It is assumed that the point clouds have the same registration,
    ie. src[i] corresponds to dst[i].

    Transformation is dst = src@rot + shift.

    Parameters
    ----------
    src : NDArray[np.floating]
        A (npoints, ndim) array of source points.
    dst : NDArray[np.floating]
        A (npoints, ndim) array of destination points.
    center_dst : bool, default: True
        If True, dst will be recentered at the origin before computing transformation.
        This is done with get_shift, but weights will not be used if provided.
    **kwargs
        Arguments to pass to get_shift.

    Returns
    -------
    rotation : NDArray[np.floating]
        The (ndim, ndim) rotation matrix.
    shift : NDArray[np.floating]
        The (ndim,) shift to apply after transformation.
        If point are in col basis will be returned as a column vector.

    Raises
    ------
    ValueError
        If the input point clouds have different shapes.
        If the input point clouds don't have enough points.
    """
    if src.shape != dst.shape:
        raise ValueError("Input point clouds should have the same shape")

    msk = np.isfinite(src).all(axis=1) * np.isfinite(dst).all(axis=1)
    ndim = src.shape[1]
    if np.sum(msk) < ndim * (ndim - 1) / 2:
        raise ValueError("Not enough finite points to compute transformation")

    _dst = dst[msk].copy()
    if center_dst:
        _kwargs = kwargs.copy()
        _kwargs.update({"weights": None})
        _dst += get_shift(_dst, np.zeros(1), **_kwargs)
    _src = src[msk].copy()
    _src += get_shift(_src, _dst, **kwargs)

    M = _src.T @ (_dst)
    u, _, vh = la.svd(M)
    v = vh.T
    uT = u.T

    corr = np.eye(ndim)
    corr[-1, -1] = la.det((v) @ (uT))
    rot = v @ corr @ uT
    rot = rot.T

    transformed = src[msk] @ rot
    shift = get_shift(transformed, dst[msk], **kwargs)

    return rot, shift

get_shift(src, dst, method='median', weights=None)

Get shift between two point clouds. Shift can be applied as dst = src + shift.

Parameters:

Name Type Description Default
src NDArray[floating]

A (ndim, npoints) array of source points.

required
dst NDArray[floating]

Nominally a (ndim, npoints) array of destination points, but really any array broadcastable with src is accepted. Some useful options are: * np.zeros(1) to align with the origin * A (ndim,) array to align with an arbitrary point

required
method str

Method to use to align points. Current accepted values are: 'median' and 'mean'

'median'
weights Optional[NDArray[floating]]

(npoints,) array of weights to use. If provided and method is 'mean' then a weighted average is used. If method is median this is not currently used.

None

Returns:

Name Type Description
shift NDArray[floating]

The (ndim,) shift to apply after transformation.

Raises:

Type Description
ValueError

If an invalid method is provided

Source code in megham/transform.py
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def get_shift(
    src: NDArray[np.floating],
    dst: NDArray[np.floating],
    method: str = "median",
    weights: Optional[NDArray[np.floating]] = None,
) -> NDArray[np.floating]:
    """
    Get shift between two point clouds.
    Shift can be applied as dst = src + shift.

    Parameters
    -----------
    src : NDArray[np.floating]
        A (ndim, npoints) array of source points.
    dst : NDArray[np.floating]
        Nominally a (ndim, npoints) array of destination points,
        but really any array broadcastable with src is accepted.
        Some useful options are:
        * np.zeros(1) to align with the origin
        * A (ndim,) array to align with an arbitrary point
    method : str, default: 'median'
        Method to use to align points.
        Current accepted values are: 'median' and 'mean'
    weights : Optional[NDArray[np.floating]], default: None
        (npoints,) array of weights to use.
        If provided and method is 'mean' then a weighted average is used.
        If method is median this is not currently used.

    Returns
    -------
    shift : NDArray[np.floating]
        The (ndim,) shift to apply after transformation.

    Raises
    ------
    ValueError
        If an invalid method is provided
    """
    if method not in ["median", "mean"]:
        raise ValueError(f"Invalid method: {method}")

    shift = np.zeros(src.shape[1])
    if method == "median":
        shift = np.median(dst - src, axis=0)
    elif method == "mean":
        if weights is None:
            shift = np.mean(dst - src, axis=0)
        else:
            wdiff = weights[..., None] * (dst - src)
            shift = np.nansum(wdiff, axis=0) / np.nansum(weights)

    return shift